Abstract. We define a complex connection on a real hypersurface of C^{n+1} which is naturally inherited from the ambient space. Using a system of Codazzi-type equations, we classify connected real hypersurfaces in C^{n+1}, n geq 2, which are Levi umbilical and have non zero constant Levi curvature. It turns out that such surfaces are contained either in a sphere or in the boundary of a complex tube domain with spherical section.

R. Monti, D. Morbidelli (2007). Levi umbilical surfaces in complex space. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 603, 113-131 [10.1515/CRELLE.2007.013].

Levi umbilical surfaces in complex space

MORBIDELLI, DANIELE
2007

Abstract

Abstract. We define a complex connection on a real hypersurface of C^{n+1} which is naturally inherited from the ambient space. Using a system of Codazzi-type equations, we classify connected real hypersurfaces in C^{n+1}, n geq 2, which are Levi umbilical and have non zero constant Levi curvature. It turns out that such surfaces are contained either in a sphere or in the boundary of a complex tube domain with spherical section.
2007
R. Monti, D. Morbidelli (2007). Levi umbilical surfaces in complex space. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 603, 113-131 [10.1515/CRELLE.2007.013].
R. Monti; D. Morbidelli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/47666
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact