Nanocomposites of polycarbonate (PC) reinforced with nanosized silica particles were prepared by a melt mixing technique in an internal mixer. Two kinds of commercial hydrophilic fumed silicas differing in their specific surface area were added in amounts up to 5% by volume, and their reinforcing action was compared to that of organically modified silica, loaded in the same amounts. Particle–matrix interactions were investigated by means of rheological and dynamic-mechanical thermal analysis, demonstrating the important role played by the organic modifi- cation in the interactions with the polymer matrix, and showing an optimal nano- particle loading around 2 vol%. The scratch resistance of the nanocomposites obtained from hydrophilic silicas was investigated, and a remarkable enhancement in the indenter’s penetration resistance was observed for all the compositions with respect to pristine PC. The same behaviour was observed for the Shore D hardness and for the impact resistance of the nanocomposites that also significantly improved with the maximum load shifting from a minimum value of 521 N for pristine PC up to values grater than 1330 N for the nanocomposites, demonstrating the activation of effective mechanisms of energy dissipation due to the presence of the nanofillers.
A.S. Luyt, M. Messori, P. Fabbri, J.P. Mofokeng, R. Taurino, T. Zanasi, et al. (2011). Polycarbonate reinforced with silica nanoparticles. POLYMER BULLETIN, 66, 991-1004 [10.1007/s00289-010-0408-5].
Polycarbonate reinforced with silica nanoparticles
MESSORI, MASSIMO;FABBRI, PAOLA;
2011
Abstract
Nanocomposites of polycarbonate (PC) reinforced with nanosized silica particles were prepared by a melt mixing technique in an internal mixer. Two kinds of commercial hydrophilic fumed silicas differing in their specific surface area were added in amounts up to 5% by volume, and their reinforcing action was compared to that of organically modified silica, loaded in the same amounts. Particle–matrix interactions were investigated by means of rheological and dynamic-mechanical thermal analysis, demonstrating the important role played by the organic modifi- cation in the interactions with the polymer matrix, and showing an optimal nano- particle loading around 2 vol%. The scratch resistance of the nanocomposites obtained from hydrophilic silicas was investigated, and a remarkable enhancement in the indenter’s penetration resistance was observed for all the compositions with respect to pristine PC. The same behaviour was observed for the Shore D hardness and for the impact resistance of the nanocomposites that also significantly improved with the maximum load shifting from a minimum value of 521 N for pristine PC up to values grater than 1330 N for the nanocomposites, demonstrating the activation of effective mechanisms of energy dissipation due to the presence of the nanofillers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.