Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis.

Varricchio, L., FRANCO MIGLIACCIO, A.R. (2014). The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH, 4, 53-72.

The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis.

FRANCO MIGLIACCIO, ANNA RITA
2014

Abstract

Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis.
2014
Varricchio, L., FRANCO MIGLIACCIO, A.R. (2014). The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH, 4, 53-72.
Varricchio, L; FRANCO MIGLIACCIO, ANNA RITA
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/466780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact