We present a sigma model field theoretic realization of Hitchin's generalized complex geometry, which recently has been shown to be relevant in compactifications of superstring theory with fluxes. Hitchin sigma model is closely related to the well known Poisson sigma model, of which it has the same field content. The construction shows a remarkable correspondence between the (twisted) integrability conditions of generalized almost complex structures and the restrictions on target space geometry implied by the Batalin--Vilkovisky classical master equation. Further, the (twisted) classical Batalin--Vilkovisky cohomology is related non trivially to a generalized Dolbeault cohomology.
R. Zucchini (2004). A sigma model field theoretic realization of Hitchin's generalized complex geometry. JOURNAL OF HIGH ENERGY PHYSICS, 0411:045, 1-20.
A sigma model field theoretic realization of Hitchin's generalized complex geometry
ZUCCHINI, ROBERTO
2004
Abstract
We present a sigma model field theoretic realization of Hitchin's generalized complex geometry, which recently has been shown to be relevant in compactifications of superstring theory with fluxes. Hitchin sigma model is closely related to the well known Poisson sigma model, of which it has the same field content. The construction shows a remarkable correspondence between the (twisted) integrability conditions of generalized almost complex structures and the restrictions on target space geometry implied by the Batalin--Vilkovisky classical master equation. Further, the (twisted) classical Batalin--Vilkovisky cohomology is related non trivially to a generalized Dolbeault cohomology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.