We deal with the Cauchy problem for a $2$-evolution operator of Schr"odinger type with $C^N$ coefficients in the time variable, $N>2$. We find the Levi conditions for well-posedness in Gevrey classes of index $1/2 + N/4$ which is the best possible as we show by means of counterexamples.

Cicognani M., Colombini F. (2004). Optimal Well-posedness of The Cauchy Problem for Evolution Equations with $C^{N}$ Coefficients. DIFFERENTIAL AND INTEGRAL EQUATIONS, 17, 1079-1092.

Optimal Well-posedness of The Cauchy Problem for Evolution Equations with $C^{N}$ Coefficients

CICOGNANI, MASSIMO;
2004

Abstract

We deal with the Cauchy problem for a $2$-evolution operator of Schr"odinger type with $C^N$ coefficients in the time variable, $N>2$. We find the Levi conditions for well-posedness in Gevrey classes of index $1/2 + N/4$ which is the best possible as we show by means of counterexamples.
2004
Cicognani M., Colombini F. (2004). Optimal Well-posedness of The Cauchy Problem for Evolution Equations with $C^{N}$ Coefficients. DIFFERENTIAL AND INTEGRAL EQUATIONS, 17, 1079-1092.
Cicognani M.; Colombini F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/4589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact