We study the Cauchy problem for a class of $p$-evolution operators $P(t,x,D_t,D_x)$ in $[0,T]times {bf R}^n$, $p>1$, with less than ${mathcal C}^1$ coefficients with respect to the time variable. According to Lipschitz, Log-Lipschitz or H"older regularity we find well posedness in Sobolev spaces or in Gevrey classes.
Titolo: | Operators of $p$-evolution with non regular coefficients in the time variable |
Autore/i: | CICOGNANI, MASSIMO; AGLIARDI, ROSSELLA |
Autore/i Unibo: | |
Anno: | 2004 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jde.2004.03.028 |
Abstract: | We study the Cauchy problem for a class of $p$-evolution operators $P(t,x,D_t,D_x)$ in $[0,T]times {bf R}^n$, $p>1$, with less than ${mathcal C}^1$ coefficients with respect to the time variable. According to Lipschitz, Log-Lipschitz or H"older regularity we find well posedness in Sobolev spaces or in Gevrey classes. |
Data prodotto definitivo in UGOV: | 2005-09-20 16:02:23 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.