The Ni-58(n,gamma) cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT = 5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2 +/- 0.6(stat) +/- 1.8(sys) mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of Ni-58, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, Ni-58 is efficiently depleted by neutron captures.

Experimental neutron capture data of Ni-58 from the CERN n_TOF facility

MASSIMI, CRISTIAN;MINGRONE, FEDERICA;VANNINI, GIANNI;
2014

Abstract

The Ni-58(n,gamma) cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT = 5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2 +/- 0.6(stat) +/- 1.8(sys) mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of Ni-58, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, Ni-58 is efficiently depleted by neutron captures.
2014
P. Zugec;M. Barbagallo;N. Colonna;D. Bosnar;S. Altstadt;J. Andrzejewski;L. Audouin;V. Becares;F. Becvar;F. Belloni;E. Berthoumieux;J. Billowes;V. Boccone;M. Brugger;M. Calviani;F. Calvino;D. Cano-Ott;C. Carrapico;F. Cerutti;E. Chiaveri;M. Chin;G. Cortes;M. A. Cortes-Giraldo;M. Diakaki;C. Domingo-Pardo;I. Duran;N. Dzysiuk;C. Eleftheriadis;A. Ferrari;K. Fraval;S. Ganesan;A. R. Garcia;G. Giubrone;M. B. Gomez-Hornillos;I. F. Goncalves;E. Gonzalez-Romero;E. Griesmayer;C. Guerrero;F. Gunsing;P. Gurusamy;D. G. Jenkins;E. Jericha;Y. Kadi;F. Kaeppeler;D. Karadimos;P. Koehler;M. Kokkoris;M. Krticka;J. Kroll;C. Langer;C. Lederer;H. Leeb;L. S. Leong;R. Losito;A. Manousos;J. Marganiec;T. Martinez;C. Massimi;P. F. Mastinu;M. Mastromarco;M. Meaze;E. Mendoza;A. Mengoni;P. M. Milazzo;F. Mingrone;M. Mirea;W. Mondalaers;C. Paradela;A. Pavlik;J. Perkowski;M. Pignatari;A. Plompen;J. Praena;J. M. Quesada;T. Rauscher;R. Reifarth;A. Riego;F. Roman;C. Rubbia;R. Sarmento;P. Schillebeeckx;S. Schmidt;G. Tagliente;J. L. Tain;D. Tarrio;L. Tassan-Got;A. Tsinganis;S. Valenta;G. Vannini;V. Variale;P. Vaz;A. Ventura;R. Versaci;M. J. Vermeulen;V. Vlachoudis;R. Vlastou;A. Wallner;T. Ware;M. Weigand;C. Weiss;T. Wright
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/430682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 27
social impact