Clusterin/apolipoprotein J is a multifunctional protein up-regulated during various pathophysiological states. Since oxidative stress plays an important role in brain aging, and in many neurodegenerative disorders, to further understand the mechanistic underpinnings of clusterin expression, in this study, we examined clusterin expression in human neuroblastoma cells under conditions of increased production of reactive oxygen species and lipid peroxidation. Specifically, we analyzed clusterin mRNA and protein levels in human neuroblastoma IMR-32 and SH-SY5Y cells following exposure to sub-lethal amounts of iron-ascorbate to induce an increase in reactive oxygen species generation and lipid peroxidation. Under such conditions, we observed a time-dependent up-regulation of clusterin protein and mRNA levels, detected by immunoblot analysis and RT-PCR, respectively. Given the known roles of clusterin, the results of the present study support the notion that an increase in clusterin expression may be a physiological defence mounted to reduce cell damage and maintain cell viability during periods of increased oxidative stress.
Strocchi P., Smith M.A., Perry G., Tamagno E., Danni O., Pession A., et al. (2006). Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells. NEUROBIOLOGY OF AGING, 27, 1588-1594 [10.1016/j.neurobiolaging.2005.09.019].
Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells.
STROCCHI, PAOLA;PESSION, ANNALISA;GAIBA, ALESSIA;DOZZA, BARBARA
2006
Abstract
Clusterin/apolipoprotein J is a multifunctional protein up-regulated during various pathophysiological states. Since oxidative stress plays an important role in brain aging, and in many neurodegenerative disorders, to further understand the mechanistic underpinnings of clusterin expression, in this study, we examined clusterin expression in human neuroblastoma cells under conditions of increased production of reactive oxygen species and lipid peroxidation. Specifically, we analyzed clusterin mRNA and protein levels in human neuroblastoma IMR-32 and SH-SY5Y cells following exposure to sub-lethal amounts of iron-ascorbate to induce an increase in reactive oxygen species generation and lipid peroxidation. Under such conditions, we observed a time-dependent up-regulation of clusterin protein and mRNA levels, detected by immunoblot analysis and RT-PCR, respectively. Given the known roles of clusterin, the results of the present study support the notion that an increase in clusterin expression may be a physiological defence mounted to reduce cell damage and maintain cell viability during periods of increased oxidative stress.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.