In this paper we introduce a method to define fractional operators using mean value operators. In particular we discuss a geometric approach in order to construct fractional operators. As a byproduct we define fractional linear operators in Carnot groups, moreover we adapt our technique to define some nonlinear fractional operators associated with the p−Laplace operators in Carnot groups.

Fausto Ferrari (2015). Mean value properties of fractional second order operators. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 14(1), 83-106 [10.3934/cpaa.2015.14.83].

Mean value properties of fractional second order operators

FERRARI, FAUSTO
2015

Abstract

In this paper we introduce a method to define fractional operators using mean value operators. In particular we discuss a geometric approach in order to construct fractional operators. As a byproduct we define fractional linear operators in Carnot groups, moreover we adapt our technique to define some nonlinear fractional operators associated with the p−Laplace operators in Carnot groups.
2015
Fausto Ferrari (2015). Mean value properties of fractional second order operators. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 14(1), 83-106 [10.3934/cpaa.2015.14.83].
Fausto Ferrari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/424775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact