We provide a simple combinatorial proof of, and generalize, a theorem of Polo which asserts that for any polynomial P with nonnegative integer coefficients such that P(0)=1 there exist two permutations u and v in a suitable symmetric group such that P is equal to the Kazhdan-Lusztig polynomial Pu,v.

F. Caselli (2004). A simple combinatorial proof of a generalization of a result of Polo Author: F. Caselli Representation Theory 8 (2004), 479-486. REPRESENTATION THEORY, 8, 479-486.

A simple combinatorial proof of a generalization of a result of Polo Author: F. Caselli Representation Theory 8 (2004), 479-486

CASELLI, FABRIZIO
2004

Abstract

We provide a simple combinatorial proof of, and generalize, a theorem of Polo which asserts that for any polynomial P with nonnegative integer coefficients such that P(0)=1 there exist two permutations u and v in a suitable symmetric group such that P is equal to the Kazhdan-Lusztig polynomial Pu,v.
2004
F. Caselli (2004). A simple combinatorial proof of a generalization of a result of Polo Author: F. Caselli Representation Theory 8 (2004), 479-486. REPRESENTATION THEORY, 8, 479-486.
F. Caselli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/42072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact