We describe a machine learning system for the recognition of names in biomedical texts. The system makes extensive use of local and syntactic features within the text, as well as external resources including the web and gazetteers. It achieves an Fscore of 70% on the Coling 2004 NLPBA/BioNLP shared task of identifying five biomedical named entities in the GENIA corpus.

Finkel J.R., Nguyen H., Manning C., Dingare S., Nissim M., Sinclair G. (2004). Exploiting Context for Biomedical Entity Recognition: from Syntax to the Web. GENEVA : s.n.

Exploiting Context for Biomedical Entity Recognition: from Syntax to the Web

NISSIM, MALVINA;
2004

Abstract

We describe a machine learning system for the recognition of names in biomedical texts. The system makes extensive use of local and syntactic features within the text, as well as external resources including the web and gazetteers. It achieves an Fscore of 70% on the Coling 2004 NLPBA/BioNLP shared task of identifying five biomedical named entities in the GENIA corpus.
2004
Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications
Finkel J.R., Nguyen H., Manning C., Dingare S., Nissim M., Sinclair G. (2004). Exploiting Context for Biomedical Entity Recognition: from Syntax to the Web. GENEVA : s.n.
Finkel J.R.; Nguyen H.; Manning C.; Dingare S.; Nissim M.; Sinclair G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/41840
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact