Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly (styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES), and using (CH3) 3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm−3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3) 3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru (CN) 6 4− at scan rates above 5 mV s−1 yielded currents controlled primarily by linear diffusion. Below 5 mV s−1, convection rather than the expected factor, radial diffusion, apparently limited the current. © 2014, Springer-Verlag Berlin Heidelberg.

Ciabocco, M., Berrettoni, M., Silvia, Z., James A., C. (2015). Immobilization of nanobeads on a surface to control the size, shape, and distribution of pores in electrochemically generated sol–gel films. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 19(7), 2087-2094 [10.1007/s10008-014-2709-3].

Immobilization of nanobeads on a surface to control the size, shape, and distribution of pores in electrochemically generated sol–gel films

CIABOCCO, MICHELA;BERRETTONI, MARIO;
2015

Abstract

Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly (styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES), and using (CH3) 3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm−3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3) 3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru (CN) 6 4− at scan rates above 5 mV s−1 yielded currents controlled primarily by linear diffusion. Below 5 mV s−1, convection rather than the expected factor, radial diffusion, apparently limited the current. © 2014, Springer-Verlag Berlin Heidelberg.
2015
Ciabocco, M., Berrettoni, M., Silvia, Z., James A., C. (2015). Immobilization of nanobeads on a surface to control the size, shape, and distribution of pores in electrochemically generated sol–gel films. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 19(7), 2087-2094 [10.1007/s10008-014-2709-3].
Ciabocco, Michela; Berrettoni, Mario; Silvia, Zamponi; James A., Cox
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/415984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact