This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.

Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

PAOLINI, ENRICO;CHIANI, MARCO;
2013

Abstract

This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.
2013
Mark F. Flanagan;Enrico Paolini;Marco Chiani;Marc P. C. Fossorier
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/414064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact