Objectives: Aspergillus terreus is considered to be resistant to amphotericin B (AMB). However, it is unknown whether higher daily doses of liposomal AMB (L-AMB) can overcome this resistance in vivo. We evaluated the efficacy and total lung homogenate AMB concentrations of escalating intravenous doses of L-AMB (3-20 mg/kg daily) versus an induction-de-escalation dosing strategy (10 mg/kg/day ×3 days, then 3 mg/kg/day) in an experimental neutropenic murine model of A. terreus pneumonia. Methods: BALB/c mice were rendered neutropenic with cyclophosphamide and administered cortisone acetate prior to intranasal inoculation (3.5 × 106 conidia) with A. terreus (Etest MIC 8 mg/L). Mice were then treated with L-AMB regimens for 5-7 days. The efficacy was assessed by animal survival and quantitative PCR lung fungal burden. Total AMB lung homogenate concentrations were determined by HPLC. Results: Compared with untreated controls, 10 mg/kg/day L-AMB prolonged survival (mean >7 versus 3-4 days, P < 0.003) and reduced A. terreus lung fungal burden (median log10 conidial DNA 5.0 versus 6.7, P < 0.05). Daily L-AMB regimens >10 mg/kg/day were associated with poorer survival and higher lung fungal burden. The induction-de-escalation strategy of 10 mg/kg/day ×3 days followed by 3 mg/kg/day was as effective as 10 mg/kg daily dosing, and resulted in higher mean AMB lung homogenate concentrations compared with a continuous 10 mg/kg regimen (23.2 ± 6.7 versus 16.4 ± 4.4 μg/g, P = 0.09). Conclusions: A high-dose induction-de-escalation L-AMB dosing strategy was an effective treatment for experimental A. terreus pneumonia in neutropenic mice.

High-dose induction liposomal amphotericin B followed by de-escalation is effective in experimental Aspergillus terreus pneumonia

LEWIS, RUSSEL EDWARD;
2013

Abstract

Objectives: Aspergillus terreus is considered to be resistant to amphotericin B (AMB). However, it is unknown whether higher daily doses of liposomal AMB (L-AMB) can overcome this resistance in vivo. We evaluated the efficacy and total lung homogenate AMB concentrations of escalating intravenous doses of L-AMB (3-20 mg/kg daily) versus an induction-de-escalation dosing strategy (10 mg/kg/day ×3 days, then 3 mg/kg/day) in an experimental neutropenic murine model of A. terreus pneumonia. Methods: BALB/c mice were rendered neutropenic with cyclophosphamide and administered cortisone acetate prior to intranasal inoculation (3.5 × 106 conidia) with A. terreus (Etest MIC 8 mg/L). Mice were then treated with L-AMB regimens for 5-7 days. The efficacy was assessed by animal survival and quantitative PCR lung fungal burden. Total AMB lung homogenate concentrations were determined by HPLC. Results: Compared with untreated controls, 10 mg/kg/day L-AMB prolonged survival (mean >7 versus 3-4 days, P < 0.003) and reduced A. terreus lung fungal burden (median log10 conidial DNA 5.0 versus 6.7, P < 0.05). Daily L-AMB regimens >10 mg/kg/day were associated with poorer survival and higher lung fungal burden. The induction-de-escalation strategy of 10 mg/kg/day ×3 days followed by 3 mg/kg/day was as effective as 10 mg/kg daily dosing, and resulted in higher mean AMB lung homogenate concentrations compared with a continuous 10 mg/kg regimen (23.2 ± 6.7 versus 16.4 ± 4.4 μg/g, P = 0.09). Conclusions: A high-dose induction-de-escalation L-AMB dosing strategy was an effective treatment for experimental A. terreus pneumonia in neutropenic mice.
2013
R. E. Lewis;N. P. Albert;G. Liao;W. Wang;R. A. Prince;D. P. Kontoyiannis
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/411783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact