We consider the problem of orthogonally packing a given set of rectangular-shaped boxes into the minimum number of three-dimensional rectangular bins. The problem is NP-hard in the strong sense and extremely difficult to solve in practice. We characterize relevant subclasses of packing and present an algorithm which is able to solve moderately large instances to optimality. Extensive computational experiments compare the algorithm for the three-dimensional bin packing when solving general orthogonal packings and when restricted to robot packings. (DOI 10.1145/1206040.1206047)
S. Martello, D. Pisinger, D. Vigo, E. den Boef, J. Korst (2007). Algorithm 864: General and robot-packable variants of the three-dimensional bin packing problem. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 33, art. no. 7 [10.1145/1206040.1206047].
Algorithm 864: General and robot-packable variants of the three-dimensional bin packing problem
MARTELLO, SILVANO;VIGO, DANIELE;
2007
Abstract
We consider the problem of orthogonally packing a given set of rectangular-shaped boxes into the minimum number of three-dimensional rectangular bins. The problem is NP-hard in the strong sense and extremely difficult to solve in practice. We characterize relevant subclasses of packing and present an algorithm which is able to solve moderately large instances to optimality. Extensive computational experiments compare the algorithm for the three-dimensional bin packing when solving general orthogonal packings and when restricted to robot packings. (DOI 10.1145/1206040.1206047)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.