We consider the Cauchy problem for a Schrodinger equation with time-dependent Hamiltonian vanishing at $t=0$ and with some slow decay conditions for the real parts of the coefficients of the convection term. We discuss the necessity of Gevrey well-posedness of the Cauchy problem.

M. Cicognani, M. Reissig (2014). NECESSITY OF GEVREY-TYPE LEVI CONDITIONS FOR DEGENERATE SCHRODINGER EQUATIONS. JOURNAL OF ABSTRACT DIFFERENTIAL EQUATIONS AND APPLICATIONS, 5, 52-70.

NECESSITY OF GEVREY-TYPE LEVI CONDITIONS FOR DEGENERATE SCHRODINGER EQUATIONS

CICOGNANI, MASSIMO;
2014

Abstract

We consider the Cauchy problem for a Schrodinger equation with time-dependent Hamiltonian vanishing at $t=0$ and with some slow decay conditions for the real parts of the coefficients of the convection term. We discuss the necessity of Gevrey well-posedness of the Cauchy problem.
2014
M. Cicognani, M. Reissig (2014). NECESSITY OF GEVREY-TYPE LEVI CONDITIONS FOR DEGENERATE SCHRODINGER EQUATIONS. JOURNAL OF ABSTRACT DIFFERENTIAL EQUATIONS AND APPLICATIONS, 5, 52-70.
M. Cicognani; M. Reissig
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/401372
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact