This paper surveys the most effective mathematical models and exact algorithms proposed for finding the optimal solution of the well-known Asymmetric Traveling Salesman Problem (ATSP). The fundamental Integer Linear Programming (ILP) model proposed by Dantzig, Fulkerson and Johnson is first presented, its classical (assignment, shortest spanning r-arborescence, linear programming) relaxations are derived, and the most effective branch-and-bound and branch-and-cut algorithms are described. The polynomial ILP formulations proposed for the ATSP are then presented and analyzed. The considered algorithms and formulations are finally experimentally compared on a set of benchmark instances.

Models and algorithms for the Asymmetric Traveling Salesman Problem: an experimental comparison

ROBERTI, ROBERTO;TOTH, PAOLO
2012

Abstract

This paper surveys the most effective mathematical models and exact algorithms proposed for finding the optimal solution of the well-known Asymmetric Traveling Salesman Problem (ATSP). The fundamental Integer Linear Programming (ILP) model proposed by Dantzig, Fulkerson and Johnson is first presented, its classical (assignment, shortest spanning r-arborescence, linear programming) relaxations are derived, and the most effective branch-and-bound and branch-and-cut algorithms are described. The polynomial ILP formulations proposed for the ATSP are then presented and analyzed. The considered algorithms and formulations are finally experimentally compared on a set of benchmark instances.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/399140
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact