The notion of an anti-commutative (resp. commutative) rigid superalgebra is a natural generalization of the notion of a Lie (resp. Jordan) superalgebra. Intuitively, rigidity means that small deformations of the product under the action of the structural group produce an isomorphic algebra. In this paper, we classify all linearly compact simple anti-commutative (resp. commutative) rigid superalgebras. Beyond Lie (resp. Jordan) superalgebras, the complete list includes four series and 22 exceptional superalgebras (resp. 10 exceptional superalgebras).

N. Cantarini, V.G. Kac (2010). Classification of linearly compact simple rigid superalgebras. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010(17), 3341-3393 [10.1093/imrn/rnp231].

Classification of linearly compact simple rigid superalgebras

CANTARINI, NICOLETTA;
2010

Abstract

The notion of an anti-commutative (resp. commutative) rigid superalgebra is a natural generalization of the notion of a Lie (resp. Jordan) superalgebra. Intuitively, rigidity means that small deformations of the product under the action of the structural group produce an isomorphic algebra. In this paper, we classify all linearly compact simple anti-commutative (resp. commutative) rigid superalgebras. Beyond Lie (resp. Jordan) superalgebras, the complete list includes four series and 22 exceptional superalgebras (resp. 10 exceptional superalgebras).
2010
N. Cantarini, V.G. Kac (2010). Classification of linearly compact simple rigid superalgebras. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010(17), 3341-3393 [10.1093/imrn/rnp231].
N. Cantarini; V.G. Kac
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/398761
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact