Growing neutrino quintessence describes a form of dynamical dark energy that could explain why dark energy dominates the universe only in recent cosmological times. This scenario predicts the formation of large-scale neutrino lumps which could allow for observational tests. We perform for the first time N-body simulations of the non-linear growth of structures for cold dark matter (CDM) and neutrino fluids in the context of growing neutrino cosmologies. Our analysis shows a pulsation increase and subsequent decrease in the neutrino density contrast. This could lead to interesting observational signatures, as an enhanced bulk flow in a situation where the DM density contrast differs only very mildly from the standard ΛCDM scenario. We also determine for the first time the statistical distribution of neutrino lumps as a function of mass at different redshifts. Such determination provides an essential ingredient for a realistic estimate of the observational signatures of growing neutrino cosmologies. Due to a breakdown of the non-relativistic Newtonian approximation, our results are limited to redshifts z≥ 1.

Oscillating non-linear large-scale structures in growing neutrino quintessence

BALDI, MARCO;
2011

Abstract

Growing neutrino quintessence describes a form of dynamical dark energy that could explain why dark energy dominates the universe only in recent cosmological times. This scenario predicts the formation of large-scale neutrino lumps which could allow for observational tests. We perform for the first time N-body simulations of the non-linear growth of structures for cold dark matter (CDM) and neutrino fluids in the context of growing neutrino cosmologies. Our analysis shows a pulsation increase and subsequent decrease in the neutrino density contrast. This could lead to interesting observational signatures, as an enhanced bulk flow in a situation where the DM density contrast differs only very mildly from the standard ΛCDM scenario. We also determine for the first time the statistical distribution of neutrino lumps as a function of mass at different redshifts. Such determination provides an essential ingredient for a realistic estimate of the observational signatures of growing neutrino cosmologies. Due to a breakdown of the non-relativistic Newtonian approximation, our results are limited to redshifts z≥ 1.
2011
Marco Baldi;Valeria Pettorino;Luca Amendola;Christof Wetterich
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/397045
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact