Purines such as adenosine 5'-triphosphate (ATP) act as extracellular messengers through specific purinergic receptors. Three different classes of purinergic receptors have been identified and termed P1, P2X, and P2Y. The purinergic receptor subunit P2X2 is a ligand-gated ion channel that is widely expressed by neurons in the CNS. In the brainstem medulla oblongata, the ionotropic P2X2 receptor (P2X2R) is enriched in the area postrema (AP). Two different antisera to P2X2R were used to determine the chemical nature of P2X2R immunoreactive cell bodies in the rat AP, an area lacking a blood-brain barrier. Subcellularly, P2X2R immunoreactivity was located to the periphery of individual cell bodies. The majority of P2X2R-immunoreactive cells were shown to contain tyrosine hydroxylase (TH) (63.5 ± 7.7%) and dopamine β-hydroxylase (61.5 ± 5.1%). Phenylethanolamine N-methyltransferase (PNMT)-containing cells were not detected in the AP, supporting a noradrenergic nature of P2X2R cells in the AP. There were no P2X2R-immunoreactive cells in the AP that contained the GABA-synthesizing enzyme glutamic acid decarboxylase 65. Only single vesicular glutamate transporter 2-immunoreactive cell bodies that were not P2X2R-positive were demonstrated in the AP. Some P2X2R-positive cells in the AP were immunoreactive for the neuropeptides substance P and pituitary adenylate cyclase-activating polypeptide, whereas dynorphin-, enkephalin-, or cholecystokinin-positive cells were not P2X2R-immunoreactive. Presence of P2X2R in a majority of noradrenergic cells of the AP implies that ATP may have a regulatory action on neuronal noradrenaline release from the AP, a circumventricular organ with a strategic position enabling interactions between circulating substances and the central nervous system.
Chiara Mangano, Gustav Colldén, Björn Meister (2012). Chemical phenotypes of P2X2 purinoreceptor immunoreactive cell bodies in the area postrema. PURINERGIC SIGNALLING, 8, 223-234 [10.1007/s11302-011-9267-2].
Chemical phenotypes of P2X2 purinoreceptor immunoreactive cell bodies in the area postrema
MANGANO, CHIARA;
2012
Abstract
Purines such as adenosine 5'-triphosphate (ATP) act as extracellular messengers through specific purinergic receptors. Three different classes of purinergic receptors have been identified and termed P1, P2X, and P2Y. The purinergic receptor subunit P2X2 is a ligand-gated ion channel that is widely expressed by neurons in the CNS. In the brainstem medulla oblongata, the ionotropic P2X2 receptor (P2X2R) is enriched in the area postrema (AP). Two different antisera to P2X2R were used to determine the chemical nature of P2X2R immunoreactive cell bodies in the rat AP, an area lacking a blood-brain barrier. Subcellularly, P2X2R immunoreactivity was located to the periphery of individual cell bodies. The majority of P2X2R-immunoreactive cells were shown to contain tyrosine hydroxylase (TH) (63.5 ± 7.7%) and dopamine β-hydroxylase (61.5 ± 5.1%). Phenylethanolamine N-methyltransferase (PNMT)-containing cells were not detected in the AP, supporting a noradrenergic nature of P2X2R cells in the AP. There were no P2X2R-immunoreactive cells in the AP that contained the GABA-synthesizing enzyme glutamic acid decarboxylase 65. Only single vesicular glutamate transporter 2-immunoreactive cell bodies that were not P2X2R-positive were demonstrated in the AP. Some P2X2R-positive cells in the AP were immunoreactive for the neuropeptides substance P and pituitary adenylate cyclase-activating polypeptide, whereas dynorphin-, enkephalin-, or cholecystokinin-positive cells were not P2X2R-immunoreactive. Presence of P2X2R in a majority of noradrenergic cells of the AP implies that ATP may have a regulatory action on neuronal noradrenaline release from the AP, a circumventricular organ with a strategic position enabling interactions between circulating substances and the central nervous system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.