A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(3df,3pd) study of the novel synthesised tetrazole-saccharyl conjugate 2-[1-(1H-tetrazol-5-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide [1-TE-BZT] was performed. In the gas phase, at room temperature, the compound exists as a mixture of six isomeric forms (four conformers of 1H tautomer and two conformers of 2H tautomer). According to theoretical calculations, conformers 1H were the most stable and the relative energies among the three most stable forms are lower than 4 kJ mol(-1). These conformers benefit from stabilising intramolecular hydrogen bonds-like interactions involving the 1H of the tetrazole ring and the carbonyl oxygen of the saccharyl moiety. The photochemistry of 1-TE-BZT in solid argon was investigated and theoretical DFT/B3LYP/6-311++G(3df,3pd) calculations also helped in assignment of the experimental bands. A quick consumption of the compound occurred after irradiation of the matrix with UV laser light at lambda = 275 nm. Three photofragmentation pathways were proposed, one leading to 2-[1-(1H-diaziren-3-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide and molecular nitrogen, a second one giving 2-(1,1-dioxide-3-oxo-1,2-benzisothiazol-2(3H)-yl)propanenitrile and azide, and a third one involving loss of azide from the tetrazole ring and decarbonylation of the saccharyl ring of 1-TE-BZT to give acrylonitrile and 7-thia-8-azabicyclo[4.2.0] octa-1,3,5-triene 7,7 dioxide. The comparison of the relative intensities of the bands of the photoproducts obtained from the three channels allowed us to consider the latter pathway, involving an unprecedented photocleavage of the benzisothiazole (saccharyl) ring, as the preferred photodeg-radation channel of 1-TE-BZT.

A. Ismael, A. Borba, L. Duarte, B.M. Giuliano, A. Gómez-Zavaglia, M.L.S. Cristiano (2012). Structure and photochemistry of a novel tetrazole-saccharyl conjugate isolated in solid argon. JOURNAL OF MOLECULAR STRUCTURE, 1025, 105-116 [10.1016/j.molstruc.2012.04.081].

Structure and photochemistry of a novel tetrazole-saccharyl conjugate isolated in solid argon

GIULIANO, BARBARA MICHELA;
2012

Abstract

A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(3df,3pd) study of the novel synthesised tetrazole-saccharyl conjugate 2-[1-(1H-tetrazol-5-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide [1-TE-BZT] was performed. In the gas phase, at room temperature, the compound exists as a mixture of six isomeric forms (four conformers of 1H tautomer and two conformers of 2H tautomer). According to theoretical calculations, conformers 1H were the most stable and the relative energies among the three most stable forms are lower than 4 kJ mol(-1). These conformers benefit from stabilising intramolecular hydrogen bonds-like interactions involving the 1H of the tetrazole ring and the carbonyl oxygen of the saccharyl moiety. The photochemistry of 1-TE-BZT in solid argon was investigated and theoretical DFT/B3LYP/6-311++G(3df,3pd) calculations also helped in assignment of the experimental bands. A quick consumption of the compound occurred after irradiation of the matrix with UV laser light at lambda = 275 nm. Three photofragmentation pathways were proposed, one leading to 2-[1-(1H-diaziren-3-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide and molecular nitrogen, a second one giving 2-(1,1-dioxide-3-oxo-1,2-benzisothiazol-2(3H)-yl)propanenitrile and azide, and a third one involving loss of azide from the tetrazole ring and decarbonylation of the saccharyl ring of 1-TE-BZT to give acrylonitrile and 7-thia-8-azabicyclo[4.2.0] octa-1,3,5-triene 7,7 dioxide. The comparison of the relative intensities of the bands of the photoproducts obtained from the three channels allowed us to consider the latter pathway, involving an unprecedented photocleavage of the benzisothiazole (saccharyl) ring, as the preferred photodeg-radation channel of 1-TE-BZT.
2012
A. Ismael, A. Borba, L. Duarte, B.M. Giuliano, A. Gómez-Zavaglia, M.L.S. Cristiano (2012). Structure and photochemistry of a novel tetrazole-saccharyl conjugate isolated in solid argon. JOURNAL OF MOLECULAR STRUCTURE, 1025, 105-116 [10.1016/j.molstruc.2012.04.081].
A. Ismael;A. Borba;L. Duarte;B.M. Giuliano;A. Gómez-Zavaglia;M.L.S. Cristiano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/396062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact