In this paper, we address the problem of estimating the optical flow in long-term video sequences. We devise a com- putational scheme that exploits the idea of receptive fields, in which the pixel flow does not only depends on the brightness level of the pixel itself, but also on neighborhood-related information. Our approach relies on the definition of receptive units that are invariant to affine transformations of the input data. This distinguishing characteristic allows us to build a video-receptive-inputs database with arbitrary detail level, that can be used to match local features and to determine their motion. We propose a parallel computational scheme, well suited for nowadays parallel architectures, to exploit motion information and invariant features from real-time video streams, for deep feature extraction, object detection, tracking, and other applications.

Gori M., Lippi M., Maggini M., Melacci S. (2014). On-line Video Motion Estimation by Invariant Receptive Inputs.

On-line Video Motion Estimation by Invariant Receptive Inputs

LIPPI, MARCO;
2014

Abstract

In this paper, we address the problem of estimating the optical flow in long-term video sequences. We devise a com- putational scheme that exploits the idea of receptive fields, in which the pixel flow does not only depends on the brightness level of the pixel itself, but also on neighborhood-related information. Our approach relies on the definition of receptive units that are invariant to affine transformations of the input data. This distinguishing characteristic allows us to build a video-receptive-inputs database with arbitrary detail level, that can be used to match local features and to determine their motion. We propose a parallel computational scheme, well suited for nowadays parallel architectures, to exploit motion information and invariant features from real-time video streams, for deep feature extraction, object detection, tracking, and other applications.
2014
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
712
717
Gori M., Lippi M., Maggini M., Melacci S. (2014). On-line Video Motion Estimation by Invariant Receptive Inputs.
Gori M.; Lippi M.; Maggini M.; Melacci S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/394777
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact