Type Extension Trees are a powerful representation language for “count-of-count” features characterizing the combinatorial structure of neighborhoods of entities in relational domains. In this paper we present a learning algorithm for Type Extension Trees (TET) that discovers informative count-of-count features in the supervised learning setting. Experiments on bibliographic data show that TET-learning is able to discover the count-of-count feature underlying the definition of the h-index, and the inverse document frequency feature commonly used in information retrieval. We also introduce a metric on TET feature values. This metric is defined as a recursive application of the Wasserstein–Kantorovich metric. Experiments with a k-NN classifier show that exploiting the recursive count-of-count statistics encoded in TET values improves classification accuracy over alternative methods based on simple count statistics.
Jaeger M, Lippi M, Passerini A, Frasconi P (2013). Type Extension Trees for feature construction and learning in relational domains. ARTIFICIAL INTELLIGENCE, 204, 30-55 [10.1016/j.artint.2013.08.002].
Type Extension Trees for feature construction and learning in relational domains
LIPPI, MARCO;
2013
Abstract
Type Extension Trees are a powerful representation language for “count-of-count” features characterizing the combinatorial structure of neighborhoods of entities in relational domains. In this paper we present a learning algorithm for Type Extension Trees (TET) that discovers informative count-of-count features in the supervised learning setting. Experiments on bibliographic data show that TET-learning is able to discover the count-of-count feature underlying the definition of the h-index, and the inverse document frequency feature commonly used in information retrieval. We also introduce a metric on TET feature values. This metric is defined as a recursive application of the Wasserstein–Kantorovich metric. Experiments with a k-NN classifier show that exploiting the recursive count-of-count statistics encoded in TET values improves classification accuracy over alternative methods based on simple count statistics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.