In this work, a signal processing method based on the Empirical Mode Decomposition (EMD) to denoise a recorded signal is proposed. EMD expresses the signal as an expansion of basis functions (Intrinsic Mode Functions - IMFs) that are signal dependent and are estimated via an iterative procedure.The decomposition of an "only noise" signal is first studied to define a Noise-Model in terms of energy and period. Then, the EMD is applied to a simulated measured signal, and the IMFs obtained are compared with the Noise-Model constructed before. Finally, an optimization procedure is performed to split the IMFs of the measured signal into 2 components: The denoised IMFs and the corresponding "Removed Noise" IMFs. The denoised IMFs are finally summed in order to reconstruct the denoised signal. The proposed algorithm is applied to a simple 3-floor shear-type frame and the ASCE 4-floor frame benchmark. The results are compared with those obtained by a standard denoising procedure based on a pass-band filter; the comparison confirmed the improvements obtained with the proposed method over classical procedures. © 2013 Taylor & Francis Group, London.

Mukhopadhyay, S., Betti, R., Galli, E., Savoia, M., Vincenzi, L. (2013). A new denoising procedure based on empirical mode decomposition for SHM purpose. George Deodatis, Bruce R. Ellingwood, Dan M. Frangopol.

A new denoising procedure based on empirical mode decomposition for SHM purpose

BETTI, RICCARDO;GALLI, ELISA;SAVOIA, MARCO;VINCENZI, LORIS
2013

Abstract

In this work, a signal processing method based on the Empirical Mode Decomposition (EMD) to denoise a recorded signal is proposed. EMD expresses the signal as an expansion of basis functions (Intrinsic Mode Functions - IMFs) that are signal dependent and are estimated via an iterative procedure.The decomposition of an "only noise" signal is first studied to define a Noise-Model in terms of energy and period. Then, the EMD is applied to a simulated measured signal, and the IMFs obtained are compared with the Noise-Model constructed before. Finally, an optimization procedure is performed to split the IMFs of the measured signal into 2 components: The denoised IMFs and the corresponding "Removed Noise" IMFs. The denoised IMFs are finally summed in order to reconstruct the denoised signal. The proposed algorithm is applied to a simple 3-floor shear-type frame and the ASCE 4-floor frame benchmark. The results are compared with those obtained by a standard denoising procedure based on a pass-band filter; the comparison confirmed the improvements obtained with the proposed method over classical procedures. © 2013 Taylor & Francis Group, London.
2013
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures
4547
4554
Mukhopadhyay, S., Betti, R., Galli, E., Savoia, M., Vincenzi, L. (2013). A new denoising procedure based on empirical mode decomposition for SHM purpose. George Deodatis, Bruce R. Ellingwood, Dan M. Frangopol.
Mukhopadhyay, S.; Betti, Riccardo; Galli, Elisa; Savoia, Marco; Vincenzi, Loris
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/394577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact