Increasingly, smartphones are used as portable personal computers, revolutionizing communication styles and entire lifestyles. Using 3D-printing technology we have made a disposable minicartridge that can be easily prototyped to turn any kind of smartphone or tablet into a portable luminometer to detect chemiluminescence derived from enzyme-coupled reactions. As proof-of-principle, lactate oxidase was coupled with horseradish peroxidase for lactate determination in oral fluid and sweat. Lactate can be quantified in less than five minutes with detection limits of 0.5 mmol L(-1) (corresponding to 4.5 mg dL(-1)) and 0.1 mmol L(-1) (corresponding to 0.9 mg dL(-1)) in oral fluid and sweat, respectively. A smartphone-based device shows adequate analytical performance to offer a cost-effective alternative for non-invasive lactate measurement. It could be used to evaluate lactate variation in relation to the anaerobic threshold in endurance sport and for monitoring lactic acidosis in critical-care patients.

A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat

RODA, ALDO;GUARDIGLI, MASSIMO;CALABRIA, DONATO;CALABRETTA, MARIA MADDALENA;CEVENINI, LUCA;MICHELINI, ELISA
2014

Abstract

Increasingly, smartphones are used as portable personal computers, revolutionizing communication styles and entire lifestyles. Using 3D-printing technology we have made a disposable minicartridge that can be easily prototyped to turn any kind of smartphone or tablet into a portable luminometer to detect chemiluminescence derived from enzyme-coupled reactions. As proof-of-principle, lactate oxidase was coupled with horseradish peroxidase for lactate determination in oral fluid and sweat. Lactate can be quantified in less than five minutes with detection limits of 0.5 mmol L(-1) (corresponding to 4.5 mg dL(-1)) and 0.1 mmol L(-1) (corresponding to 0.9 mg dL(-1)) in oral fluid and sweat, respectively. A smartphone-based device shows adequate analytical performance to offer a cost-effective alternative for non-invasive lactate measurement. It could be used to evaluate lactate variation in relation to the anaerobic threshold in endurance sport and for monitoring lactic acidosis in critical-care patients.
2014
Aldo Roda;Massimo Guardigli;Donato Calabria;Maria Maddalena Calabretta;Luca Cevenini;Elisa Michelini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/393665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 154
  • ???jsp.display-item.citation.isi??? 138
social impact