We consider the monomer–dimer model on sequences of random graphs locally convergent to trees. We prove that the monomer density converges almost surely, in the thermodynamic limit, to an analytic function of the monomer activity. We characterise this limit as the expectation of the solution of a fixed point distributional equation and we give an explicit expression of the limiting pressure per particle.

Solution of the monomer-dimer model on locally tree-like graphs. Rigorous results

ALBERICI, DIEGO;CONTUCCI, PIERLUIGI
2014

Abstract

We consider the monomer–dimer model on sequences of random graphs locally convergent to trees. We prove that the monomer density converges almost surely, in the thermodynamic limit, to an analytic function of the monomer activity. We characterise this limit as the expectation of the solution of a fixed point distributional equation and we give an explicit expression of the limiting pressure per particle.
Diego Alberici; Pierluigi Contucci
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/392744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact