This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT) treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned "field-in-field" IMRT technique (Co-FinF) where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. D mean , D 98% , D 2% , V 95% , V 107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D 2% ) and high-dose volume (V 110% ). Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.

Cilla, S., Kigula-Mugambe, J., Digesù, C., Macchia, G., Bogale, S., Massaccesi, M., et al. (2013). Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer. MEDICAL PHYSICS, 38(3), 125-131 [10.4103/0971-6203.116367].

Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

BUWENGE, MILLY;MORGANTI, ALESSIO GIUSEPPE
2013

Abstract

This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT) treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned "field-in-field" IMRT technique (Co-FinF) where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. D mean , D 98% , D 2% , V 95% , V 107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D 2% ) and high-dose volume (V 110% ). Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.
2013
Cilla, S., Kigula-Mugambe, J., Digesù, C., Macchia, G., Bogale, S., Massaccesi, M., et al. (2013). Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer. MEDICAL PHYSICS, 38(3), 125-131 [10.4103/0971-6203.116367].
Cilla, S.; Kigula-Mugambe, J.; Digesù, C.; Macchia, G.; Bogale, S.; Massaccesi, M.; Dawotola, D.; Deodato, F.; Buwenge, M.; Caravatta, L.; Piermattei,...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/390991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact