We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, whilepreserving soundness and completeness for polynomial time. In particular, we providecompositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.

Bounded Linear Logic, Revisited

DAL LAGO, UGO;
2010

Abstract

We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, whilepreserving soundness and completeness for polynomial time. In particular, we providecompositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/387882
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 3
social impact