The tumor suppressor p53 protein supports growth arrest and is able to induce apoptosis, a signaling cascade regulated by sequential activation of caspases. Mechanisms that lead from p53 to activation of individual initiator caspases are still unclear. The present model for caspase-2 activation includes PIDDosome complex formation. However, in certain experimental models, elimination of complex constituents PIDD or RAIDD did not significantly influence caspase-2 activation, suggesting the existence of an alternative activation platform for caspase-2. Here we have investigated the link between p53 and caspase-2 in further detail and report that the latter is able to utilize the CD95 DISC as an activation platform. The recruitment of caspase-8 to this complex is required for activation of caspase-2. In the experimental system used, the DISC is formed through a distinct, p53-dependent upregulation of CD95. Moreover, we show that caspase-2 and -8 cleave Bid, and that both act simultaneously upstream of mitochondrial cytochrome c release. Finally, a direct interaction between the two caspases and the ability of caspase-8 to cleave caspase-2 are demonstrated. Thus, the observed functional link between caspase-8 and -2 within the DISC represents an alternative mechanism to the PIDDosome for caspase-2 activation in response to DNA damage
Olsson M, Vakifahmetoglu H, Abruzzo PM, Högstrand K, Grandien A, Zhivotovsky B. (2009). DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. ONCOGENE, 28, 1949-1959 [10.1038/onc.2009.36].
DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis
ABRUZZO, PROVVIDENZA MARIA;
2009
Abstract
The tumor suppressor p53 protein supports growth arrest and is able to induce apoptosis, a signaling cascade regulated by sequential activation of caspases. Mechanisms that lead from p53 to activation of individual initiator caspases are still unclear. The present model for caspase-2 activation includes PIDDosome complex formation. However, in certain experimental models, elimination of complex constituents PIDD or RAIDD did not significantly influence caspase-2 activation, suggesting the existence of an alternative activation platform for caspase-2. Here we have investigated the link between p53 and caspase-2 in further detail and report that the latter is able to utilize the CD95 DISC as an activation platform. The recruitment of caspase-8 to this complex is required for activation of caspase-2. In the experimental system used, the DISC is formed through a distinct, p53-dependent upregulation of CD95. Moreover, we show that caspase-2 and -8 cleave Bid, and that both act simultaneously upstream of mitochondrial cytochrome c release. Finally, a direct interaction between the two caspases and the ability of caspase-8 to cleave caspase-2 are demonstrated. Thus, the observed functional link between caspase-8 and -2 within the DISC represents an alternative mechanism to the PIDDosome for caspase-2 activation in response to DNA damageI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.