Endothelial xanthine oxidoreductase (XOR) together with NAD(P)H oxidase and nitric oxide (NO) synthase plays a physiologic role in inflammatory signalling, the regulation of NO production and vascular function. The oxidative stress generated by these enzymes may induce endothelial dysfunction, leading to atherosclerosis, cardiovascular diseases and metabolic syndrome. XOR activity creates both oxidant and anti-oxidant products that are implicated in the development of hypertension, smoking vascular injury, dyslipidemia and diabetes, which are the main risk factors of atherosclerosis. In particular, uric acid may have a protective as well as a detrimental role in vascular alterations, thus justifying the multi-directional effects of XOR inhibition. Moreover, XOR products are associated with cell differentiation, leading to adipogenesis and foam cell formation, as well as to the production of monocyte chemoattractant protein-1 from arterial smooth muscle cells, after proliferation and migration. The role of XOR in adipogenesis is also connected with insulin resistance and obesity, two main features of type 2 diabetes.
Battelli MG, Polito L, Bolognesi A (2014). Xanthine Oxidoreductase In Atherosclerosis Pathogenesis: Not Only Oxidative Stress. ATHEROSCLEROSIS, 237, 562-567 [10.1016/j.atherosclerosis.2014.10.006].
Xanthine Oxidoreductase In Atherosclerosis Pathogenesis: Not Only Oxidative Stress.
BATTELLI, MARIA GIULIA;POLITO, LETIZIA;BOLOGNESI, ANDREA
2014
Abstract
Endothelial xanthine oxidoreductase (XOR) together with NAD(P)H oxidase and nitric oxide (NO) synthase plays a physiologic role in inflammatory signalling, the regulation of NO production and vascular function. The oxidative stress generated by these enzymes may induce endothelial dysfunction, leading to atherosclerosis, cardiovascular diseases and metabolic syndrome. XOR activity creates both oxidant and anti-oxidant products that are implicated in the development of hypertension, smoking vascular injury, dyslipidemia and diabetes, which are the main risk factors of atherosclerosis. In particular, uric acid may have a protective as well as a detrimental role in vascular alterations, thus justifying the multi-directional effects of XOR inhibition. Moreover, XOR products are associated with cell differentiation, leading to adipogenesis and foam cell formation, as well as to the production of monocyte chemoattractant protein-1 from arterial smooth muscle cells, after proliferation and migration. The role of XOR in adipogenesis is also connected with insulin resistance and obesity, two main features of type 2 diabetes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.