This study was aimed at comparing the oxidative degradation of commercial acetabular cups made of cross-linked polyethylene (XLPE) and conventional ultrahigh molecular weight polyethylene (UHMWPE). After testing against deliberately scratched CoCrMo femoral heads in a hip joint simulator, the cups, microtomed parallel to the articulating surface, were analyzed by IR spectroscopy. Due to the potential for artifacts caused by absorbed contaminants, the IR spectra were compared only after hexane extraction; actually, XLPE was found to absorb more serum than UHMWPE. The two sets of unworn acetabular cups showed different oxidation patterns with consequently different distributions of carbonyl species; unworn XLPE was characterized by lower contents of carbonyl species and hydrogen-bonded alcohols and higher contents of trans-vinylene species than unworn UHMWPE. Upon simulator testing, UHMWPE showed more significant changes in oxidation indexes and distribution of carbonyl compounds than XLPE, confirming a better wear behavior for XLPE under the adopted testing conditions.

Oxidation in ultrahigh molecular weight polyethylene and cross-linked polyethylene acetabular cups tested against roughened femoral heads in a hip joint simulator.

TADDEI, PAOLA;FAGNANO, CONCEZIO;TONI, ALDO
2006

Abstract

This study was aimed at comparing the oxidative degradation of commercial acetabular cups made of cross-linked polyethylene (XLPE) and conventional ultrahigh molecular weight polyethylene (UHMWPE). After testing against deliberately scratched CoCrMo femoral heads in a hip joint simulator, the cups, microtomed parallel to the articulating surface, were analyzed by IR spectroscopy. Due to the potential for artifacts caused by absorbed contaminants, the IR spectra were compared only after hexane extraction; actually, XLPE was found to absorb more serum than UHMWPE. The two sets of unworn acetabular cups showed different oxidation patterns with consequently different distributions of carbonyl species; unworn XLPE was characterized by lower contents of carbonyl species and hydrogen-bonded alcohols and higher contents of trans-vinylene species than unworn UHMWPE. Upon simulator testing, UHMWPE showed more significant changes in oxidation indexes and distribution of carbonyl compounds than XLPE, confirming a better wear behavior for XLPE under the adopted testing conditions.
P. Taddei; S. Affatato; C. Fagnano; A. Toni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/38555
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact