A Deep-seated Gravitational Slope Deformation (DGSD) extends over an area of 3.75 km2 in the south-west flank of Mt. Ganderberg, north of Bolzano, Italy. The landslide stretches from an altitude of 2,330 m a.s.l. down to the River Passer at 1,170 m, with an estimated shear surface depth of 100 m. The area is characterized by typical Alpine morphological features and preserves traces of the last glaciation and clear evidences of recent gravitational phenomena. The DGSD induced some collateral mass movements such has rotational and translational slides. Since 2007 the DGSD has been monitored through a network of 20 Global Navigation Satellite System (GNSS) benchmarks. The results showed a different rate of displacement, between the north and the south sectors that allowed to define the kinematics patterns of the landslide, a key point to forecast future scenarios and to support risk managers and public administration in the definition of the countermeasures for risk mitigation
Giulia Bossi, Simone Frigerio, Matteo Mantovani, Gianluca Marcato, Luca Schenato, Alessandro Pasuto (2015). Ganderberg Landslide Characterization Through Monitoring [10.1007/978-3-319-09057-3_233].
Ganderberg Landslide Characterization Through Monitoring
BOSSI, GIULIA;
2015
Abstract
A Deep-seated Gravitational Slope Deformation (DGSD) extends over an area of 3.75 km2 in the south-west flank of Mt. Ganderberg, north of Bolzano, Italy. The landslide stretches from an altitude of 2,330 m a.s.l. down to the River Passer at 1,170 m, with an estimated shear surface depth of 100 m. The area is characterized by typical Alpine morphological features and preserves traces of the last glaciation and clear evidences of recent gravitational phenomena. The DGSD induced some collateral mass movements such has rotational and translational slides. Since 2007 the DGSD has been monitored through a network of 20 Global Navigation Satellite System (GNSS) benchmarks. The results showed a different rate of displacement, between the north and the south sectors that allowed to define the kinematics patterns of the landslide, a key point to forecast future scenarios and to support risk managers and public administration in the definition of the countermeasures for risk mitigationI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.