We provide a sufficient condition for the completeness of a time-dependent vector field in R^N, generalizing the well-known left-invariance condition on Lie groups. This result can be applied to the construction of Lie groups associated to suitable families X of Hörmander vector fields, without the need to use the Third Fundamental Theorem of Lie. Further applications are given to the control-theoretic distance related to X, and to the existence of the relevant geodesics.

S. Biagi, A. Bonfiglioli (2015). A completeness result for time-dependent vector fields and applications. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 17(4), 1-26 [10.1142/S0219199714500400].

A completeness result for time-dependent vector fields and applications

BIAGI, STEFANO;BONFIGLIOLI, ANDREA
2015

Abstract

We provide a sufficient condition for the completeness of a time-dependent vector field in R^N, generalizing the well-known left-invariance condition on Lie groups. This result can be applied to the construction of Lie groups associated to suitable families X of Hörmander vector fields, without the need to use the Third Fundamental Theorem of Lie. Further applications are given to the control-theoretic distance related to X, and to the existence of the relevant geodesics.
2015
S. Biagi, A. Bonfiglioli (2015). A completeness result for time-dependent vector fields and applications. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 17(4), 1-26 [10.1142/S0219199714500400].
S. Biagi; A. Bonfiglioli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/375483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact