Metformin, a well-known insulin-sensitizer commonly used for type 2 diabetes therapy, has recently emerged as potentially very attractive drug also in oncology. It is cheap, it is relatively safe and many reports have indicated effects in cancer prevention and therapy. These desirable features are particularly interesting for pediatric sarcomas, a group of rare tumors that have been shown to be dependent on IGF and insulin system for pathogenesis and progression. Metformin exerts anti-mitogenic activity in several cancer histotypes through several molecular mechanisms. In this paper, we analyzed its effects against osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, the three most common pediatric sarcomas. Despite in vitro metformin gave remarkable antiproliferative and chemosensitizing effects both in sensitive and chemoresistant cells, its efficacy was not confirmed against Ewing sarcoma xenografts neither as single agent nor in combination with vincristine. This discrepancy between in vitro and in vivo effects may be due to hypoxia, a common feature of solid tumors. We provide evidences that in hypoxia conditions metformin was not able to activate AMPK and inhibit mTOR signaling, which likely prevents the inhibitory effects of metformin on tumor growth. Thus, although metformin may be considered a useful complement of conventional chemotherapy in normoxia, its therapeutic value in highly hypoxic tumors may be more limited. The impact of hypoxia should be considered when novel therapies are planned for pediatric sarcomas.
Garofalo, C., Capristo, M., Manara, M.c., Mancarella, C., Landuzzi, L., Belfiore, A., et al. (2013). Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLOS ONE, 8(12), 1-12 [10.1371/journal.pone.0083832].
Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug.
Capristo M;Mancarella C;LANDUZZI, LORENA;LOLLINI, PIER LUIGI;PICCI, PIERO;SCOTLANDI, KATIA
2013
Abstract
Metformin, a well-known insulin-sensitizer commonly used for type 2 diabetes therapy, has recently emerged as potentially very attractive drug also in oncology. It is cheap, it is relatively safe and many reports have indicated effects in cancer prevention and therapy. These desirable features are particularly interesting for pediatric sarcomas, a group of rare tumors that have been shown to be dependent on IGF and insulin system for pathogenesis and progression. Metformin exerts anti-mitogenic activity in several cancer histotypes through several molecular mechanisms. In this paper, we analyzed its effects against osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, the three most common pediatric sarcomas. Despite in vitro metformin gave remarkable antiproliferative and chemosensitizing effects both in sensitive and chemoresistant cells, its efficacy was not confirmed against Ewing sarcoma xenografts neither as single agent nor in combination with vincristine. This discrepancy between in vitro and in vivo effects may be due to hypoxia, a common feature of solid tumors. We provide evidences that in hypoxia conditions metformin was not able to activate AMPK and inhibit mTOR signaling, which likely prevents the inhibitory effects of metformin on tumor growth. Thus, although metformin may be considered a useful complement of conventional chemotherapy in normoxia, its therapeutic value in highly hypoxic tumors may be more limited. The impact of hypoxia should be considered when novel therapies are planned for pediatric sarcomas.File | Dimensione | Formato | |
---|---|---|---|
Metformin PLoS One.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
pone.0083832.s001.tif
accesso aperto
Descrizione: Immunohistochemical evaluation of HIF-1alpha in xenografts. Representative figures are shown (magnification X100). Enlargement of a detailed section is shown to highlight nuclei staining (magnification X200 and X400).
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
6.23 MB
Formato
TIFF
|
6.23 MB | TIFF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.