Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is not tailored to study the action of transformation groups that are different from the group Homeo(X) of all self-homeomorphisms of a topological space X. This fact restricts its use in applications. In order to obtain better lower bounds for the natural pseudo-distance d_G associated with a subgroup G of Homeo(X), we need to adapt persistent homology and consider G-invariant persistent homology. Roughly speaking, the main idea consists in defining persistent homology by means of a set of chains that is invariant under the action of G. In this paper, we formalize this idea and prove the stability of the persistent Betti number functions in G-invariant persistent homology with respect to the natural pseudo-distance d_G. We also show how G-invariant persistent homology could be used in applications concerning shape comparison, when the invariance group is a proper subgroup of the group of all self-homeomorphisms of a topological space. In this paper, we will assume that the space X is triangulable, in order to guarantee that the persistent Betti number functions are finite without using any tameness assumption.

Patrizio Frosini (2015). G-invariant persistent homology. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(6), 1190-1199 [10.1002/mma.3139].

G-invariant persistent homology

FROSINI, PATRIZIO
2015

Abstract

Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is not tailored to study the action of transformation groups that are different from the group Homeo(X) of all self-homeomorphisms of a topological space X. This fact restricts its use in applications. In order to obtain better lower bounds for the natural pseudo-distance d_G associated with a subgroup G of Homeo(X), we need to adapt persistent homology and consider G-invariant persistent homology. Roughly speaking, the main idea consists in defining persistent homology by means of a set of chains that is invariant under the action of G. In this paper, we formalize this idea and prove the stability of the persistent Betti number functions in G-invariant persistent homology with respect to the natural pseudo-distance d_G. We also show how G-invariant persistent homology could be used in applications concerning shape comparison, when the invariance group is a proper subgroup of the group of all self-homeomorphisms of a topological space. In this paper, we will assume that the space X is triangulable, in order to guarantee that the persistent Betti number functions are finite without using any tameness assumption.
2015
Patrizio Frosini (2015). G-invariant persistent homology. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(6), 1190-1199 [10.1002/mma.3139].
Patrizio Frosini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/373981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact