We present results of computer experiments that indicate that several RNAs for which the native state (minimum free energy secondary structure) is functionally important (type III hammerhead ribozymes, signal recognition particle RNAs, U2 small nucleolar spliceosomal RNAs, certain riboswitches, etc.) all have lower folding energy than random RNAs of the same length and dinucleotide frequency. Additionally, we find that whole mRNA as well as 5'-UTR, 3'-UTR, and cds regions of mRNA have folding energies comparable to that of random RNA, although there may be a statistically insignificant trace signal in 3'-UTR and cds regions. Various authors have used nucleotide (approximate) pattern matching and the computation of minimum free energy as filters to detect potential RNAs in ESTs and genomes. We introduce a new concept of the asymptotic Z-score and describe a fast, whole-genome scanning algorithm to compute asymptotic minimum free energy Z-scores of moving-window contents. Asymptotic Z-score computations offer another filter, to be used along with nucleotide pattern matching and minimum free energy computations, to detect potential functional RNAs in ESTs and genomic regions.

CLOTE P, FERRE' F., KRIZANC D, KRANAKIS E (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591 [10.1261/rna.7220505].

Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency

FERRE', FABRIZIO;
2005

Abstract

We present results of computer experiments that indicate that several RNAs for which the native state (minimum free energy secondary structure) is functionally important (type III hammerhead ribozymes, signal recognition particle RNAs, U2 small nucleolar spliceosomal RNAs, certain riboswitches, etc.) all have lower folding energy than random RNAs of the same length and dinucleotide frequency. Additionally, we find that whole mRNA as well as 5'-UTR, 3'-UTR, and cds regions of mRNA have folding energies comparable to that of random RNA, although there may be a statistically insignificant trace signal in 3'-UTR and cds regions. Various authors have used nucleotide (approximate) pattern matching and the computation of minimum free energy as filters to detect potential RNAs in ESTs and genomes. We introduce a new concept of the asymptotic Z-score and describe a fast, whole-genome scanning algorithm to compute asymptotic minimum free energy Z-scores of moving-window contents. Asymptotic Z-score computations offer another filter, to be used along with nucleotide pattern matching and minimum free energy computations, to detect potential functional RNAs in ESTs and genomic regions.
2005
RNA
CLOTE P, FERRE' F., KRIZANC D, KRANAKIS E (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591 [10.1261/rna.7220505].
CLOTE P;FERRE' F.;KRIZANC D;KRANAKIS E
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/372624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 92
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 150
social impact