We construct a sound, complete, and terminating tableau system for the interval temporal logic ${{\rm D}_\sqsubset}$ interpreted in interval structures over dense linear orderings endowed with strict subinterval relation (where both endpoints of the sub-interval are strictly inside the interval). In order to prove the soundness and completeness of our tableau construction, we introduce a kind of finite pseudo-models for our logic, called ${{\rm D}_\sqsubset}$ -structures, and show that every formula satisfiable in ${{\rm D}_\sqsubset}$ is satisfiable in such pseudo-models, thereby proving small-model property and decidability in PSPACE of ${{\rm D}_\sqsubset}$ , a result established earlier by Shapirovsky and Shehtman by means of filtration. We also show how to extend our results to the interval logic ${{\rm D}_\sqsubset}$ interpreted over dense interval structures with proper (irreflexive) subinterval relation, which differs substantially from ${{\rm D}_\sqsubset}$ and is generally more difficult to analyze. Up to our knowledge, no complete deductive systems and decidability results for ${{\rm D}_\sqsubset}$ have been proposed in the literature so far.

Davide Bresolin, Valentin Goranko, Angelo Montanari, Pietro Sala (2007). Tableau Systems for Logics of Subinterval Structures over Dense Orderings. Springer [10.1007/978-3-540-73099-6_8].

Tableau Systems for Logics of Subinterval Structures over Dense Orderings

BRESOLIN, DAVIDE;
2007

Abstract

We construct a sound, complete, and terminating tableau system for the interval temporal logic ${{\rm D}_\sqsubset}$ interpreted in interval structures over dense linear orderings endowed with strict subinterval relation (where both endpoints of the sub-interval are strictly inside the interval). In order to prove the soundness and completeness of our tableau construction, we introduce a kind of finite pseudo-models for our logic, called ${{\rm D}_\sqsubset}$ -structures, and show that every formula satisfiable in ${{\rm D}_\sqsubset}$ is satisfiable in such pseudo-models, thereby proving small-model property and decidability in PSPACE of ${{\rm D}_\sqsubset}$ , a result established earlier by Shapirovsky and Shehtman by means of filtration. We also show how to extend our results to the interval logic ${{\rm D}_\sqsubset}$ interpreted over dense interval structures with proper (irreflexive) subinterval relation, which differs substantially from ${{\rm D}_\sqsubset}$ and is generally more difficult to analyze. Up to our knowledge, no complete deductive systems and decidability results for ${{\rm D}_\sqsubset}$ have been proposed in the literature so far.
2007
16th International Conference, TABLEAUX 2007
73
89
Davide Bresolin, Valentin Goranko, Angelo Montanari, Pietro Sala (2007). Tableau Systems for Logics of Subinterval Structures over Dense Orderings. Springer [10.1007/978-3-540-73099-6_8].
Davide Bresolin; Valentin Goranko; Angelo Montanari; Pietro Sala
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/371958
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact