Under general p,q-growth conditions, we prove that the Dirichlet problem \[\sum_{i=1}^{n}D_{x_{i}}(a^{i}(x,Du))=b(x) \text{in}\,\Omega , u=u_{0} \text{on}\,\partial \Omega\] has a weak solution $u\in W_{loc}^{1,q}(\Omega)$ under the assumptions $1<p\leq q\leq p+1$ and $q<p\frac{n-1}{n-p}$. More regularity applies. Precisely, this solution is also in the class $W_{ loc}^{1,\infty}(\Omega)\cap {W_{loc}^{2,2}(\Omega)}$.

G. Cupini, P. Marcellini, E. Mascolo (2014). Existence and regularity for elliptic equations under p,q-growth. ADVANCES IN DIFFERENTIAL EQUATIONS, 19, 693-724.

Existence and regularity for elliptic equations under p,q-growth

CUPINI, GIOVANNI;
2014

Abstract

Under general p,q-growth conditions, we prove that the Dirichlet problem \[\sum_{i=1}^{n}D_{x_{i}}(a^{i}(x,Du))=b(x) \text{in}\,\Omega , u=u_{0} \text{on}\,\partial \Omega\] has a weak solution $u\in W_{loc}^{1,q}(\Omega)$ under the assumptions $1
2014
G. Cupini, P. Marcellini, E. Mascolo (2014). Existence and regularity for elliptic equations under p,q-growth. ADVANCES IN DIFFERENTIAL EQUATIONS, 19, 693-724.
G. Cupini; P. Marcellini; E. Mascolo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/366515
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact