We consider an extension of OMDoc proofs with alternative sub-proofs and proofs at different level of detail, and an affine non-deterministic fragment of the lambda-bar-mu-mu-tilde-calculus seen as a proof format. We provide explanations in pseudo-natural language of proofs in both formats, and a formal correspondence between the two by means of two mutually inverse encodings of one format in the other one.

A Formal Correspondence between OMDoc with Alternative Proofs and the lambda-bar-mu-mu-tilde-Calculus

SACERDOTI COEN, CLAUDIO
2006

Abstract

We consider an extension of OMDoc proofs with alternative sub-proofs and proofs at different level of detail, and an affine non-deterministic fragment of the lambda-bar-mu-mu-tilde-calculus seen as a proof format. We provide explanations in pseudo-natural language of proofs in both formats, and a formal correspondence between the two by means of two mutually inverse encodings of one format in the other one.
Lecture Notes in Computer Science - Lecture Notes in Artificial Intelligence Mathematical Knowledge Management, 5th International Conference, MKM 2006
67
81
S. Autexier; C. Sacerdoti Coen
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/36618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact