We present a study on the binding properties of molecular hydrogen to several polar aromatic molecules and to a model for the metal-oxide corner of the metal organic framework materials recently investigated as promising supports for hydrogen storage. Density functional theory employing the Perdew Wang exchange-correlation functional and second order Møller-Plesset calculations are used to determine the equilibrium structures of complexes with molecular hydrogen and their stability. It is found that for most hetero-aromatics the edge sites for molecular hydrogen physisorption have stabilities comparable to the top sites. The DFT predicted binding energies compare favorably with those estimated at MP2 level, and get closer to the MP2 results for increased electrostatic contributions (induced by the polar aromatics) to the intermolecular interaction. Vibrational frequencies are also computed at the DFT level and infrared activities of the H2 stretching frequency are compared for the various complexes. Pyrrole, pyridine and n-oxide pyridine are predicted to form the more stable complexes among one-ring aromatics. The computed binding energies to metal-organic framework materials are in good agreement with experimental observations. It is suggested that replacement of the organic linker in MOF materials with some of the more efficient aromatics investigated here might contribute to enhance the H2 storage properties of mixed inorganic-organic materials.

Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials / F. Negri; N. Saendig. - In: THEORETICAL CHEMISTRY ACCOUNTS. - ISSN 1432-881X. - ELETTRONICO. - 118:(2007), pp. 149-163. [10.1007/s00214-007-0254-1]

Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials

NEGRI, FABRIZIA;
2007

Abstract

We present a study on the binding properties of molecular hydrogen to several polar aromatic molecules and to a model for the metal-oxide corner of the metal organic framework materials recently investigated as promising supports for hydrogen storage. Density functional theory employing the Perdew Wang exchange-correlation functional and second order Møller-Plesset calculations are used to determine the equilibrium structures of complexes with molecular hydrogen and their stability. It is found that for most hetero-aromatics the edge sites for molecular hydrogen physisorption have stabilities comparable to the top sites. The DFT predicted binding energies compare favorably with those estimated at MP2 level, and get closer to the MP2 results for increased electrostatic contributions (induced by the polar aromatics) to the intermolecular interaction. Vibrational frequencies are also computed at the DFT level and infrared activities of the H2 stretching frequency are compared for the various complexes. Pyrrole, pyridine and n-oxide pyridine are predicted to form the more stable complexes among one-ring aromatics. The computed binding energies to metal-organic framework materials are in good agreement with experimental observations. It is suggested that replacement of the organic linker in MOF materials with some of the more efficient aromatics investigated here might contribute to enhance the H2 storage properties of mixed inorganic-organic materials.
2007
Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials / F. Negri; N. Saendig. - In: THEORETICAL CHEMISTRY ACCOUNTS. - ISSN 1432-881X. - ELETTRONICO. - 118:(2007), pp. 149-163. [10.1007/s00214-007-0254-1]
F. Negri; N. Saendig
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/36378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact