In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps.

Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification

MINIACI, MARCO;MARZANI, ALESSANDRO;TESTONI, NICOLA;DE MARCHI, LUCA
2015

Abstract

In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps.
Marco Miniaci; Alessandro Marzani; Nicola Testoni; Luca De Marchi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/359516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact