A low abuse liability is reported for tramadol, an analgesic drug centrally acting through either opioid or nonopioid mechanisms. In this paper, we evaluated the effects of the repeated administration (7 d) of different doses of tramadol (10, 20, and 80 mg/kg, intraperitoneally) on the opioid precursor prodynorphin biosynthesis, in comparison with morphine (10 mg/kg, intraperitoneally), in the rat central nervous system (CNS). Northern analysis showed that morphine and tramadol produced different effects. While morphine caused a downregulation of prodynorphin mRNAlevels in all investigated areas (hypothalamus, hippocampus, and striatum), tramadol did not cause any significant change in the striatum, and did not decrease prodynorphin biosynthesis in the hypothalamus and in the hippocampus, at nontoxic doses (10 and 20 mg/kg). The highest dose of tramadol (80 mg/kg) decreased prodynorphin mRNA levels in the hypothalamus and the hippocampus but not in the striatum. These data give some information on tramadol effects at molecular level in the CNS. They indicate that the alterations of prodynorphin gene expression caused by tramadol and morphine show a different pattern that may be related to the different abuse potential of the two analgesic drugs.

Candeletti S., Lopetuso G., Cannarsa R., Cavina C., Romualdi P. (2006). Effects of prolonged treatment with the opiate tramadol on prodynorphin gene expression in rat CNS. JOURNAL OF MOLECULAR NEUROSCIENCE, 30, 341-348.

Effects of prolonged treatment with the opiate tramadol on prodynorphin gene expression in rat CNS.

CANDELETTI, SANZIO;LOPETUSO, GIUSEPPE;CANNARSA, ROSALIA;CAVINA, CHIARA;ROMUALDI, PATRIZIA
2006

Abstract

A low abuse liability is reported for tramadol, an analgesic drug centrally acting through either opioid or nonopioid mechanisms. In this paper, we evaluated the effects of the repeated administration (7 d) of different doses of tramadol (10, 20, and 80 mg/kg, intraperitoneally) on the opioid precursor prodynorphin biosynthesis, in comparison with morphine (10 mg/kg, intraperitoneally), in the rat central nervous system (CNS). Northern analysis showed that morphine and tramadol produced different effects. While morphine caused a downregulation of prodynorphin mRNAlevels in all investigated areas (hypothalamus, hippocampus, and striatum), tramadol did not cause any significant change in the striatum, and did not decrease prodynorphin biosynthesis in the hypothalamus and in the hippocampus, at nontoxic doses (10 and 20 mg/kg). The highest dose of tramadol (80 mg/kg) decreased prodynorphin mRNA levels in the hypothalamus and the hippocampus but not in the striatum. These data give some information on tramadol effects at molecular level in the CNS. They indicate that the alterations of prodynorphin gene expression caused by tramadol and morphine show a different pattern that may be related to the different abuse potential of the two analgesic drugs.
2006
Candeletti S., Lopetuso G., Cannarsa R., Cavina C., Romualdi P. (2006). Effects of prolonged treatment with the opiate tramadol on prodynorphin gene expression in rat CNS. JOURNAL OF MOLECULAR NEUROSCIENCE, 30, 341-348.
Candeletti S.; Lopetuso G.; Cannarsa R.; Cavina C.; Romualdi P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/35221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact