Aims. We present and release photometric redshifts for a uniquely large and deep sample of 522286 objects with i'_AB≤ 25 in the Canada-France Hawaii Telescope Legacy Survey (CFHTLS) "Deep Survey" fields D1, D2, D3, and D4, which cover a total effective area of 3.2 °^2. Methods: . We use 3241 spectroscopic redshifts with 0 ≤ z ≤ 5 from the VIMOS VLT Deep Survey (VVDS) as a calibration and training set to derive these photometric redshifts. Using the "Le Phare" photometric redshift code, we developed a robust calibration method based on an iterative zero-point refinement combined with a template optimisation procedure and the application of a Bayesian approach. This method removes systematic trends in the photometric redshifts and significantly reduces the fraction of catastrophic errors (by a factor of 2), a significant improvement over traditional methods. We use our unique spectroscopic sample to present a detailed assessment of the robustness of the photometric redshift sample. Results: . For a sample selected at i'_AB≤ 24, we reach a redshift accuracy of σΔ z/(1+z)=0.029 with η=3.8% of catastrophic errors (η is defined strictly as those objects with |Δ z|/(1+z) > 0.15). The reliability of our photometric redshifts decreases for faint objects: we find σΔ z/(1+z)=0.025, 0.034 and η=1.9%, 5.5% for samples selected at i'_AB=17.5-22.5 and 22.5-24 respectively. We find that the photometric redshifts of starburst galaxies are less reliable: although these galaxies represent only 22% of the spectroscopic sample, they are responsible for 50% of the catastrophic errors. An analysis as a function of redshift demonstrates that our photometric redshifts work best in the redshift range 0.2≤ z ≤ 1.5. We find an excellent agreement between the photometric and the VVDS spectroscopic redshift distributions at i'_AB≤ 24. Finally, we compare the redshift distributions of i' selected galaxies on the four CFHTLS deep fields, showing that cosmic variance is still present on fields of 0.7-0.9 deg^2. These photometric redshifts are made publicly available at http://terapix.iap.fr (complete ascii catalogues) and http://cencos.oamp.fr/cencos/CFHTLS/ (searchable database interface).

Ilbert O., Arnouts S., McCracken H. J., Bolzonella M., Bertin E., Le Fèvre O., et al. (2006). Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. ASTRONOMY & ASTROPHYSICS, 457, 841-856 [10.1051/0004-6361:20065138].

Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey

CUCCIATI, OLGA;MARANO, BRUNO;BONGIORNO, ANGELA;GREGORINI, LORETTA;
2006

Abstract

Aims. We present and release photometric redshifts for a uniquely large and deep sample of 522286 objects with i'_AB≤ 25 in the Canada-France Hawaii Telescope Legacy Survey (CFHTLS) "Deep Survey" fields D1, D2, D3, and D4, which cover a total effective area of 3.2 °^2. Methods: . We use 3241 spectroscopic redshifts with 0 ≤ z ≤ 5 from the VIMOS VLT Deep Survey (VVDS) as a calibration and training set to derive these photometric redshifts. Using the "Le Phare" photometric redshift code, we developed a robust calibration method based on an iterative zero-point refinement combined with a template optimisation procedure and the application of a Bayesian approach. This method removes systematic trends in the photometric redshifts and significantly reduces the fraction of catastrophic errors (by a factor of 2), a significant improvement over traditional methods. We use our unique spectroscopic sample to present a detailed assessment of the robustness of the photometric redshift sample. Results: . For a sample selected at i'_AB≤ 24, we reach a redshift accuracy of σΔ z/(1+z)=0.029 with η=3.8% of catastrophic errors (η is defined strictly as those objects with |Δ z|/(1+z) > 0.15). The reliability of our photometric redshifts decreases for faint objects: we find σΔ z/(1+z)=0.025, 0.034 and η=1.9%, 5.5% for samples selected at i'_AB=17.5-22.5 and 22.5-24 respectively. We find that the photometric redshifts of starburst galaxies are less reliable: although these galaxies represent only 22% of the spectroscopic sample, they are responsible for 50% of the catastrophic errors. An analysis as a function of redshift demonstrates that our photometric redshifts work best in the redshift range 0.2≤ z ≤ 1.5. We find an excellent agreement between the photometric and the VVDS spectroscopic redshift distributions at i'_AB≤ 24. Finally, we compare the redshift distributions of i' selected galaxies on the four CFHTLS deep fields, showing that cosmic variance is still present on fields of 0.7-0.9 deg^2. These photometric redshifts are made publicly available at http://terapix.iap.fr (complete ascii catalogues) and http://cencos.oamp.fr/cencos/CFHTLS/ (searchable database interface).
2006
Ilbert O., Arnouts S., McCracken H. J., Bolzonella M., Bertin E., Le Fèvre O., et al. (2006). Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. ASTRONOMY & ASTROPHYSICS, 457, 841-856 [10.1051/0004-6361:20065138].
Ilbert O.; Arnouts S.; McCracken H. J.; Bolzonella M.; Bertin E.; Le Fèvre O.; Mellier Y.; Zamorani G.; Pellò R.; Iovino A.; Tresse L.; Le Brun V.; Bo...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/34963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1233
  • ???jsp.display-item.citation.isi??? 1185
social impact