We consider subelliptic equations in non divergence form of the type $$ Lu =\sum_{i\geq j} a_{ij}X_iX_ju = 0 $$ where $X_j$ are the Grushin vector fields, and the matrix coefficient is uniformly elliptic. We obtain a scale invariant Harnack's inequality on the $X_j$'s CC balls for nonnegative solutions under the only assumption that the ratio between the maximum and minimum eigenvalues of the coefficient matrix is bounded. In the paper we first prove a weighted Aleksandrov-Bakelman-Pucci estimate, and then we show a critical density estimate, the double ball property and the power decay property. Once this is established, Harnack's inequality follows directly from the axiomatic theory developed by Di Fazio, Gutierrez and Lanconelli in Di Fazio et al. (2008).

Harnack inequality for a subelliptic PDE in nondivergence form

MONTANARI, ANNAMARIA
2014

Abstract

We consider subelliptic equations in non divergence form of the type $$ Lu =\sum_{i\geq j} a_{ij}X_iX_ju = 0 $$ where $X_j$ are the Grushin vector fields, and the matrix coefficient is uniformly elliptic. We obtain a scale invariant Harnack's inequality on the $X_j$'s CC balls for nonnegative solutions under the only assumption that the ratio between the maximum and minimum eigenvalues of the coefficient matrix is bounded. In the paper we first prove a weighted Aleksandrov-Bakelman-Pucci estimate, and then we show a critical density estimate, the double ball property and the power decay property. Once this is established, Harnack's inequality follows directly from the axiomatic theory developed by Di Fazio, Gutierrez and Lanconelli in Di Fazio et al. (2008).
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/345115
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact