Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and "anti-evaporates". Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an "anti-evaporation" and an "evaporation" term.
R. Casadio, C. Germani (2006). Gravitational collapse and evolution of holographic black holes [10.1088/1742-6596/33/1/055].
Gravitational collapse and evolution of holographic black holes
CASADIO, ROBERTO;
2006
Abstract
Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and "anti-evaporates". Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an "anti-evaporation" and an "evaporation" term.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.