We perform a general reduction scheme that can be applied in particular to the spectral study of operators of the type $P=P(x,y,hD_x,D_y)$ as $h$ tends to zero. This scheme permits to reduce the study of $P$ to the one of a semiclassical matrix operator of the type $A=A(x,hD_x)$. Here, for any fixed $(x,xi )inR^n$, the eigenvalues of the principal symbol $a(x,xi )$ of $A$ are eigenvalues of the operator $P(x,y,xi ,D_y)$.

A General Effective-Hamiltonian Method

MARTINEZ, ANDRE' GEORGES
2007

Abstract

We perform a general reduction scheme that can be applied in particular to the spectral study of operators of the type $P=P(x,y,hD_x,D_y)$ as $h$ tends to zero. This scheme permits to reduce the study of $P$ to the one of a semiclassical matrix operator of the type $A=A(x,hD_x)$. Here, for any fixed $(x,xi )inR^n$, the eigenvalues of the principal symbol $a(x,xi )$ of $A$ are eigenvalues of the operator $P(x,y,xi ,D_y)$.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/34424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact