Nowadays, three-phase multilevel inverters are widely employed in medium and high-power applications, increasing the power ratings, improving the output voltage quality and reducing the conducted electromagnetic interferences. Despite of numerous pulse-width modulation (PWM) techniques have been developed for multilevel inverters, a detailed analysis of the output current ripple amplitude has not been reported yet. In this study, the peak-to-peak current ripple distribution over a fundamental period is analysed in details specifically for three-level three-phase voltage source inverters for both motor-load and grid-connected applications. In particular, the peak-to-peak amplitude of the current ripple is determined analytically as a function of the modulation index. The centred PWM strategy is considered in all the developments, implemented either by carrier-based or space vector (SV) PWM methods. With this modulation, the dc bus utilisation is maximised in a simple and effective way, and a nearly-optimal behaviour is obtained to minimise the current ripple rms. The results obtained in different cases and sub-cases identified in the proposed analytical approach are verified by experimental tests with reference to threephase three-level neutral-point clamped configuration.
Gabriele Grandi, Obrad Dordevic, Jelena Loncarski (2014). Analytical evaluation of output current ripple amplitude in three-phase three-level inverters. IET POWER ELECTRONICS, 7(9), 2258-2268 [10.1049/iet-pel.2013.0837].
Analytical evaluation of output current ripple amplitude in three-phase three-level inverters
GRANDI, GABRIELE;Jelena Loncarski
2014
Abstract
Nowadays, three-phase multilevel inverters are widely employed in medium and high-power applications, increasing the power ratings, improving the output voltage quality and reducing the conducted electromagnetic interferences. Despite of numerous pulse-width modulation (PWM) techniques have been developed for multilevel inverters, a detailed analysis of the output current ripple amplitude has not been reported yet. In this study, the peak-to-peak current ripple distribution over a fundamental period is analysed in details specifically for three-level three-phase voltage source inverters for both motor-load and grid-connected applications. In particular, the peak-to-peak amplitude of the current ripple is determined analytically as a function of the modulation index. The centred PWM strategy is considered in all the developments, implemented either by carrier-based or space vector (SV) PWM methods. With this modulation, the dc bus utilisation is maximised in a simple and effective way, and a nearly-optimal behaviour is obtained to minimise the current ripple rms. The results obtained in different cases and sub-cases identified in the proposed analytical approach are verified by experimental tests with reference to threephase three-level neutral-point clamped configuration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.