The primary stability of cementless prostheses is critical for the long-term outcome of the operation. Surgeons are currently driven only by their experience in evaluating the extent of stem stability achieved. The aim of the present work was to develop a new device that enables the stability of a cementless stem to be quantitatively assessed intraoperatively. The angle of the stem/femur rotation under torsion and the torque are acquired and compared in real-time to a pre-set threshold inferred from the literature. The device indicates whether the stem is stable or not. It was extensively tested and finally validated in vitro on cadaveric and composite femurs hosting different sizes of the same kind of prostheses, implanted with different levels of press-fitting. The overall accuracy (23%) takes into account not only the overall measurement error but also the variability due to differences in bone quality and stem press-fitting. This error was deemed sufficient to discriminate between stable and unstable implants.
Cristofolini L, Varini E, Pelgreffi I, Cappello A, Toni A. (2006). Device to measure intra-operatively the primary stability of cementless hip stems. MEDICAL ENGINEERING & PHYSICS, 28, 475-482 [10.1016/j.medengphy.2005.07.015].
Device to measure intra-operatively the primary stability of cementless hip stems
CRISTOFOLINI, LUCA;VARINI, ELENA;CAPPELLO, ANGELO;TONI, ALDO
2006
Abstract
The primary stability of cementless prostheses is critical for the long-term outcome of the operation. Surgeons are currently driven only by their experience in evaluating the extent of stem stability achieved. The aim of the present work was to develop a new device that enables the stability of a cementless stem to be quantitatively assessed intraoperatively. The angle of the stem/femur rotation under torsion and the torque are acquired and compared in real-time to a pre-set threshold inferred from the literature. The device indicates whether the stem is stable or not. It was extensively tested and finally validated in vitro on cadaveric and composite femurs hosting different sizes of the same kind of prostheses, implanted with different levels of press-fitting. The overall accuracy (23%) takes into account not only the overall measurement error but also the variability due to differences in bone quality and stem press-fitting. This error was deemed sufficient to discriminate between stable and unstable implants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.