The use of 3D tracking systems in a Virtual Reality environment may definitely change CAD interfaces and free-form surface modelling. In this paper an original method for full 3D interactive surface shaping and modifying is described. VISM (Virtual Integrated Surface Modeller) has been developed with the leading idea that 3D tracking system can dramatically speed up modelling sessions. On the opposite of a W-I-M-P (Windows-Icons-Menu-Pointer), paradigm common to most current CAD systems, VISM demonstrates that Virtual Reality devices can manage all types of surface in a unique shape generative action. Unlike “Virtual Clay” based and “Metaball” modelling techniques, VISM both wants to give to engineers and designers a more intuitive and natural tool to get 3D shapes. Based on Polhemus Fastrak and stereoscopic vision, VISM doesn’t provide icons to the designer, leading to a “null icons” and “null menu” full 3D interface. The new interface is fully implemented on bi-manual input system on top of a Virtual Reality environment. The entity grabbing is also supported by pinch-enabled gloves. The designer exploits a NURBS curve tool to deform a NURBS surface and extracts drive curve direction from his right hand movement. The curve tool may be also real-time deformed with left hand through node-control point repositioning. Furthermore the modeller is fully implemented using NURBS curves and surfaces and a fast surface-over-curve positioning and deformation has been implemented, replacing both traditional snapping and picking activities.

NURBS Surface Shaping in a Virtual Reality Environment / LIVERANI A.; PIRACCINI G.. - STAMPA. - (2004), pp. 473-478. (Intervento presentato al convegno IASTED International Conference on Modelling, Identification and Control (MIC 2004) tenutosi a Grindelwald (Switzerland) nel February 22-25, 2004).

NURBS Surface Shaping in a Virtual Reality Environment

LIVERANI, ALFREDO;PIRACCINI, GIANLUCA
2004

Abstract

The use of 3D tracking systems in a Virtual Reality environment may definitely change CAD interfaces and free-form surface modelling. In this paper an original method for full 3D interactive surface shaping and modifying is described. VISM (Virtual Integrated Surface Modeller) has been developed with the leading idea that 3D tracking system can dramatically speed up modelling sessions. On the opposite of a W-I-M-P (Windows-Icons-Menu-Pointer), paradigm common to most current CAD systems, VISM demonstrates that Virtual Reality devices can manage all types of surface in a unique shape generative action. Unlike “Virtual Clay” based and “Metaball” modelling techniques, VISM both wants to give to engineers and designers a more intuitive and natural tool to get 3D shapes. Based on Polhemus Fastrak and stereoscopic vision, VISM doesn’t provide icons to the designer, leading to a “null icons” and “null menu” full 3D interface. The new interface is fully implemented on bi-manual input system on top of a Virtual Reality environment. The entity grabbing is also supported by pinch-enabled gloves. The designer exploits a NURBS curve tool to deform a NURBS surface and extracts drive curve direction from his right hand movement. The curve tool may be also real-time deformed with left hand through node-control point repositioning. Furthermore the modeller is fully implemented using NURBS curves and surfaces and a fast surface-over-curve positioning and deformation has been implemented, replacing both traditional snapping and picking activities.
2004
Proceedings of IASTED International Conference on Modelling, Identification and Control (MIC 2004)
473
478
NURBS Surface Shaping in a Virtual Reality Environment / LIVERANI A.; PIRACCINI G.. - STAMPA. - (2004), pp. 473-478. (Intervento presentato al convegno IASTED International Conference on Modelling, Identification and Control (MIC 2004) tenutosi a Grindelwald (Switzerland) nel February 22-25, 2004).
LIVERANI A.; PIRACCINI G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/3336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact