A new 3,4-ethylenedioxythiophene (EDOT) monomer derivatized with aminopropyl-triethoxysilane (APTES-EDOT) was prepared via a simple two step reaction in high yield. The new monomer can be firmly grafted to the fluorine−tin-oxide (FTO) conductive glass, where the irreversible electro-oxidation of surface bound APTES-EDOT, in the presence of unsubstituted EDOT monomers in solution, triggers the cationic polymerization of EDOT, resulting in the incorporation of PEDOT chains into APTES-EDOT. As a result, the modified PEDOT film (Si-PEDOT) is covalently bound to the FTO surface and easily withstands mechanical stresses that are critical for the adhesion of regular PEDOT. When tested with Co(III)/(II) redox shuttles, electrodeposited Si-PEDOT films showed decreased charge transfer and mass transport resistances with respect to both platinum and conventional PEDOT films, leading to enhanced relative efficiencies (≈10%) when employed as counter electrode in transparent dye sensitized solar cells.

Stefano Carli, Laura Casarin, Giacomo Bergamini, Stefano Caramori, Carlo Alberto Bignozzi (2014). Conductive PEDOT Covalently Bound to Transparent FTO Electrodes. JOURNAL OF PHYSICAL CHEMISTRY. C, 118, 16782-16790 [10.1021/jp412758g].

Conductive PEDOT Covalently Bound to Transparent FTO Electrodes

BERGAMINI, GIACOMO;
2014

Abstract

A new 3,4-ethylenedioxythiophene (EDOT) monomer derivatized with aminopropyl-triethoxysilane (APTES-EDOT) was prepared via a simple two step reaction in high yield. The new monomer can be firmly grafted to the fluorine−tin-oxide (FTO) conductive glass, where the irreversible electro-oxidation of surface bound APTES-EDOT, in the presence of unsubstituted EDOT monomers in solution, triggers the cationic polymerization of EDOT, resulting in the incorporation of PEDOT chains into APTES-EDOT. As a result, the modified PEDOT film (Si-PEDOT) is covalently bound to the FTO surface and easily withstands mechanical stresses that are critical for the adhesion of regular PEDOT. When tested with Co(III)/(II) redox shuttles, electrodeposited Si-PEDOT films showed decreased charge transfer and mass transport resistances with respect to both platinum and conventional PEDOT films, leading to enhanced relative efficiencies (≈10%) when employed as counter electrode in transparent dye sensitized solar cells.
2014
Stefano Carli, Laura Casarin, Giacomo Bergamini, Stefano Caramori, Carlo Alberto Bignozzi (2014). Conductive PEDOT Covalently Bound to Transparent FTO Electrodes. JOURNAL OF PHYSICAL CHEMISTRY. C, 118, 16782-16790 [10.1021/jp412758g].
Stefano Carli;Laura Casarin;Giacomo Bergamini;Stefano Caramori;Carlo Alberto Bignozzi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/324916
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact